Grünbaum's theorem

For any convex set 𝒮\mathcal{S} with center-of-gravity 𝐜\mathbf{c}, and any halfspace 𝒵={𝐱|𝐚,𝐱𝐜0}\mathcal{Z}=\{\mathbf{x}|\langle\mathbf{a},\mathbf{x}-\mathbf{c}\rangle\leq 0\} then: vol(𝒮𝒵)vol(𝒮)1e.368\frac{\mathrm{vol}(\mathcal{S}\cap\mathcal{Z})}{\mathrm{vol}(\mathcal{S})} \geq \frac{1}{e} \approx .368


For any convex set KnK \in \mathbb{R}^n with a center of gravity cnc \in \mathbb{R}^n, and any halfspace H={x|a(xc)0}H = \{x | a^\intercal (x − c) ≥ 0\} passing through cc, 1evol(KH)vol(K)(11e)\frac{1}{e} \leq \frac{\mathrm{vol}(K\cap H)}{\mathrm{vol}(K)} \leq \left(1-\frac{1}{e}\right)


see: Center-of-gravity method


References:

  1. B. Grünbaum. Partitions of mass-distributions and of convex bodies by hyperplanes. Pacific J. Math., 10:1257–1261, 1960
  2. https://www.cs.cmu.edu/~anupamg/advalgos17/scribes/lec16.pdf
  3. https://user.math.uni-bremen.de/~grimpen/papers/grunbaum.pdf